
MMME2046 Vibrations Review

This is intended to be a general review of the 
topics covered in MMME2046. It does not 

contain all information required to do the exam 
successfully, and some topics may be missing.

All slides here are derived from lecture slides in 
case you wish to see more detail.

Information specific to the Exam (length, time 
to complete, question types, etc.) can be found 

on the module moodle page. 
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What did we cover?

• Single Degree of Freedom Systems

❖ Free body diagrams

❖ Equations of motion

❖ Determining natural frequency

• Free Vibration

❖ Response of a single DOF system to External vibration

❖ Effect of damping on displacement response

• Zero damping

• High damping

• Critical damping

• Light damping

❖ Undamped and damped natural frequencies

❖ Damping ratio

❖ Estimation of damping from experimental results
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What did we cover?

• Forced Vibration (in our case largely Harmonic Vibration)

❖ Determination of steady state response for various systems

❖ Frequency Response Function (FRF)

• Multiple Degrees of Freedom

❖ Free body diagrams

❖ Equations of motion and resulting generalized equation in 
matrix form

❖ Determination of natural frequencies and mode shapes

• Approximate methods

❖ Rayleigh's

❖ Simplification to single DOF systems
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What did we cover?

• Beam Vibrations

❖ Assemble general matrix 

❖ Solving for C1- C4 based on boundary conditions

❖ Natural frequencies

❖ Mode shapes

• Vibration isolation

❖ Transmissibility of forces

• To surrounding structure

• To the ground

❖ Isolator values

• Stiffness

• Static deflection

• Design of the isolator given manufacturers specifications
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Single Degrees of Freedom
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Starting steps for any vibration system

1) Convert the physical structure into a dynamic mass-
spring model

2) Draw a free body diagram

This is the key step in the analysis and should be 
tackled systematically

There are three stages

(i) Create the “free” body by removing any restraining 
springs

(ii) Select a motion coordinate and mark it on the diagram

(iii) Apply a positive deflection in the chosen motion 
coordinate, identify the forces (and/or moments) that 
result and draw them on the diagram

!!!ASSUME WE ARE LOOKING AT SMALL DEFLECTIONS FROM 
STATIC EQUILIBRIUM!!!

3) Apply the appropriate form of Newton's 2nd Law of 
motion to give the equation of motion for the system



m

Physical System
Equilibrium position

STEP 1 Dynamic Spring-Mass Model

kk

m

Example 1  Mass suspended on a massless spring

x



Completed free 
body diagram

STEP 2:  Free Body Diagram

k

x

kx

Displacement from 
equilibrium position

m



STEP 3:  Equation of motion 

Resultant force in 

the direction of the 

acceleration

Absolute 

acceleration of 

the centre of mass

=     Mass    x

x

kx

m

xk− =

The chosen 
positive 

direction of 
motion is 

downwards

Re-arrange as

𝑥
ሶ𝑥
ሷ𝑥

𝑚 ሷ𝑥

𝑚 ሷ𝑥 + 𝑘𝑥 = 0



When used in the equation of motion, ω must have the units 

of rad/s to make the equation consistent

However, the value would normally be quoted (in a report, for 
example) using the units of Hz (Hertz or cycles/s)

The two are linked by the equation:

UNITS   Don’t be caught out

   rad/s
π2

ω
Hz n

nf =

The rule is: 

When substituting frequency values into formulae, 
use units of rad/s

When quoting frequency values in answers or reports, 
use units of Hz



We will find that the equation of motion of all single-degree-
of-freedom systems has the form

where  z is the chosen motion coordinate

Obtaining the natural frequencies of other systems

Hence, as soon as you’ve derived the equation of motion and 
obtained the coefficients of the displacement and 
acceleration, you can immediately write down the expression 
for the natural frequency of a system

 rad/sω
M

K
n =

The natural frequency is given by

!!!THERE IS NO DIFFERENCE BETWEEN SOLVING OF LINEAR AND 
ROTATIONAL SYSTEMS!!!

All that changes are the symbols used.

M ሷ𝑧 + 𝐾𝑧 = 0



Free Vibration
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Mass-spring-damper system

Rocker system

Single-axle caravan

Some systems covered in class

All linear, single-degree-of-freedom systems have this form, which 
can be written generically as:

z is the response coordinate

M is the Mass coefficient of acceleration

C is the Damping coefficient of velocity

K is the Stiffness coefficient of displacement z

F( t ) is the excitation function (independent of z)

ሷ𝑧

ሶ𝑧

M ሷ𝑧 + 𝐶 ሶ𝑧 + 𝐾𝑧 = 𝐹 𝑡

M ሷ𝑧 + 𝐶 ሶ𝑧 + 𝐾𝑧 = 𝐹 𝑡

m𝑙2
2 ሷ𝜃 + 𝑐𝑙2

2 ሶ𝜃 + 𝑘1𝑙1
2𝜃 + 𝑘2𝑙2

2 𝜃 = 𝑙2𝑃 𝑡
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A:  “FREE” VIBRATION

“Free” vibration means that there is no external applied force 
or moment acting on the structure

( ) t
Atz

λ
e=I.e.                 , general solution is   ( ) 0=tF

The complete solution for the transient response is then

The integration constants, A1 and A2, are found from the “initial 

conditions” specified in the problem and derivations for z(t) with 
respect to time on the formula sheet.

( )
tt

AA  tz
2

2

1

1

λλ
e    e +=

 M

MK   C    C 
    , 

2

4
λ

2

21

−−
=Where
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There are FOUR CASES to consider

Case (i) Zero damping

Case (ii) High damping 

 >1 (𝐶2 > 4𝐾𝑀)

Case (iii) Critical damping 

 =1 (𝐶2 = 4𝐾𝑀)

Case (iv) Light damping 

 <1 (𝐶2 < 4𝐾𝑀)

You should be able to identify and use the correct equations from the 
formula sheet given the damping level of your system

The most common in this class being light damping

0=C
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( )
tt nnnn

AAtz 





 −−−





 −+−

+=
22 γ1ωωγ

2

γ1ωωγ

1 ee
ii

Gives 

These equations describe a sinusoidal waveform (indicated by the 
terms in the square brackets) with an exponentially decaying term 
that will cause the amplitude of the sinusoid to decrease

( )  tBtBtz nn

tn 2

2

2

1

ωγ γ1ωsinγ1ωcose −+−= −

Using of the complex exponential identities and the fact that A1

and A2 are a complex conjugate pair, this becomes

Time

Di
sp

la
ce

m
en

t

Light Damping
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Time

D
is

p
la

c
e
m

e
n
t

( ) t 
m

J
     t  x n

n

n

t



= − sin  e

 ω γ  

In the worked example from class, 

e 1
 

1
 ω γ tn

n

 
m

J
    X −


=

( )e 1 
2

 ω γ nn

n

Tt 
m

J
    X +−


=

t1 The second peak occurs 
one period after the first 

t1+Tn

e
 ω γ  

2

1 nn T    
X

X
=The ratio of the amplitudes is 

 
   

  T

nn

n

γ1ω

22
2

−
=


=


Where,

Estimating Damping – Logrithmic Decrement Method



Forced Vibration/Harmonic Response
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Forced Versus Harmonic Vibration

Forced Vibration is when an alternating force or motion is 
applied to a mechanical system, for example when a washing 
machine shakes due to an imbalance. 

Harmonic Vibration is a type of Forced Vibration in which a 
force is repeatedly applied to a system.

Harmonic Vibration is what we typically considered.
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The complete solution for z(t) consists of 

❖ The solution to the Complementary Function or Transient Response

❖ The Particular Integral or Steady-State Response

( ) ( ) ( )SSTR tztz  tz     +=



21
Total Displacement is then ( ) ( ) ( )SSTR tztz  tz     +=
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Leading to:

OR

For a simple single degree-of-freedom 
mass-spring-damper system 

( ) e
 ω  t F    t f i= ( ) e

 ω  t F    t f i=

This is also called the Frequency Response Function (FRF):
Response / Unit Applied Force

Substitute the following into the EOM k c

m
z

tF ωcos

𝑀 ሷ𝑧 + 𝐶 ሶ𝑧 + 𝐾𝑧 = 𝑓 𝑡

𝑧𝑠𝑠 𝑡 = 𝑍 cos 𝜔𝑡 + 𝛼

ሶ𝑧𝑠𝑠 𝑡 = −𝜔𝑍 𝑠𝑖𝑛 𝜔𝑡 + 𝛼

ሷ𝑧𝑠𝑠 𝑡 = −𝜔2𝑍 cos 𝜔𝑡 + 𝛼

𝑧𝑠𝑠 𝑡 = 𝑍∗𝑒𝑖𝜔𝑡

ሶ𝑧𝑠𝑠 𝑡 = 𝑖𝜔𝑍∗𝑒𝑖𝜔𝑡

ሷ𝑧𝑠𝑠 𝑡 = −𝜔2𝑍∗𝑒𝑖𝜔𝑡
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From complex algebra the amplitude of response is then:

The phase lag is:

( )
      4  +     - 1    

   =

ωω
2  

n

2  
2  

2  
n

2  
2  222 2

*
















+−
=

K

F

  C         M K 

F
  Z

( ) ( )αωcos*   t  Z    tz
SS

+=



( )
ω

ω
γ2 

ω

ω
1

ω1

ωω

ω

2
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−
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=

+−
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=

Substitutions:

( ) ( )trKtrCxKxCxM rr +=++ 

Equation of motion for a simple mass-spring-damper with displacement input:

Where

The FRF is 

kKandkCkKcC rr 2,2,2,2 ====

2k2c

m
x

( )tr

𝑥𝑠𝑠 𝑡 = 𝑋∗𝑒𝑖𝜔𝑡

ሶ𝑥𝑠𝑠 𝑡 = −𝜔𝑋∗𝑒𝑖𝜔𝑡

ሷ𝑥𝑠𝑠 𝑡 = −𝜔2𝑋∗𝑒𝑖𝜔𝑡

𝑟 𝑡 = 𝑅𝑒𝑖𝜔𝑡

ሶ𝑟 𝑡 = 𝑖𝜔𝑅𝑒𝑖𝜔𝑡



( )
( ) 









+−

−−
= −

22

2
1

ωω
tan

CCMKK

CKMKC

rr

rr 


The phase angle is: 

( ) ( )αωcos*   t  X    tx
SS

+=

The amplitude of response is then:

( )
2

2
2

2

2

2

222

2222

222

*

ω
41

ω

ωω

ω

nn

rrrr

K

RCK

CMK

RCK
Z







+








−

+
=

+−

+
=

There are further forms of these equations, but these are the ones 
on your equation sheet.



26

0.1

1
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0 0.5 1 1.5 2
Frequency ratio

F
R

F
*

K

0 0.02

0.05 0.1

0.2 0.5

Increasing damping

The response depends on 
nω

ω and on damping ratio 

Damping ratio

Low damping gives a 
high resonant peak

c.f. normal “factors of 
safety” in design

Cause of vibration-
induced fatigue
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Damping ratio

At low frequencies, the phase angle is approximately zero

It drops by 180º as the system passes through resonance

-180

-135

-90

-45

0

0 0.5 1 1.5 2
Frequency ratio

P
h

a
s
e
 a

n
g

le

0 0.02

0.05 0.1

0.2 0.5

Increasing damping



Multiple Degrees of Freedom
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2 Degrees of Freedom 

STEP 2:  Free-body Diagrams
STEP 1:  
Dynamic Mass-Spring 
Model

m2

m1

k2

k1

m2

m1

k2

k1

x2

x1

11 xk

Force in spring k2 ?
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Force in spring k2 ?

k 2

x2

x1

The expression for the force in a spring is 
Spring force =  Stiffness x  Change of length

( )122 xxk −

( )122 xxk −

k 2

x2

x1

( )212 xxk −

( )212 xxk −

The two are 
exactly equivalent

What is the change of length of the spring?

Is the spring in tension or compression?
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STEP 2:  Free-body Diagrams

m2 x2

m1 x1

11 xk

( )212 xxk −

( )212 xxk −

Completed free 

body diagrams

m2

m1

k2

k1
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STEP 3:  Equations of motion

m2

m1

x2

x1

11 xk

( )212 xxk −

x2

x1
(1a)

(1b)

22 xk−( ) 121 xkk ++ 0=

22 xk+ 0=12 xk−

In matrix form (& remembering the general formulation 𝑀 ሷ𝑧 + 𝐾𝑧 = 0)           


















−

−+
+

2

1

22

221

x

x

kk

kkk









=
0

0

𝑚1 ሷ𝑥1

𝑚2 ሷ𝑥2

𝑚1 0
0 𝑚2

ሷ𝑥1
ሷ𝑥2
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In matrix form


















−

−+
+

2

1

22

221

x

x

kk

kkk









=
0

0

or

As with single-degree-of-freedom systems, we can check for errors 
in the equations at this stage. 

In particular,

(1) the terms in the leading diagonals of [M] and [K] are always 

positive

(2) the off-diagonal terms may be positive or negative

(3) [M] and [K] are often symmetric about the leading diagonal 

𝑚1 0
0 𝑚2

ሷ𝑥1
ሷ𝑥2

𝑀 ሷ𝑥 + 𝐾 𝑥 = 0



34

Solution to obtain natural frequencies and mode shapes

For free vibration of the system at one of its natural frequencies, the 
motion of each mass will be sinusoidal.  

Use as substitutions,                               and 

Substituting into EOM and cancelling the common factor  cos t

( ) tXtx ωcos11 = ( ) tXtx ωcos22 =

In matrix form

(2a)

(2b)



















−−

−−+

2

1

2

2

22

21

2

21

ω

ω

X

X

mkk

kmkk









=
0

0

ሷ𝑥1 𝑡 = −𝜔2𝑋1 cos𝜔𝑡 ሷ𝑥2 𝑡 = −𝜔2𝑋2 cos𝜔𝑡
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   ( )   
    0

02

=

=−

XZ

    X  M    K 

Resulting matrix is an eigenvalue problem; normally presented in 
maths books as

Where the eigenvalues give the natural frequencies and the 
eigenvectors give the corresponding mode shapes

For a non-trivial solution find the                       and solve for ω  0  =  det Z

Obtaining the Natural Frequencies

To find the corresponding mode shapes, we substitute each root 

back into the Matrix to get the relationship between X1 and X2

Obtaining the Mode Shapes

Give one value (X1 or X2) an amplitude of UNITY (i.e. X1 or X2 =1) and 
then find the amplitude of the other (X2 or X1 ) relative to this

Be aware of in-phase and out-of-phase relationships at various mode 
shapes, and be able to sketch them.
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In the exam you are expected to be able to form the 
generalized matrices ([Z]{X}={0}) for any DOF system, and 
solve for values of ω and {X} up to 2 DOF. If you are given a 

3 DOF system you will be provided with enough information 
that your 3 equations will only have 2 unknowns to solve for. 

You are also expected to be able to sketch basic mode shapes 
given boundary conditions, without solving for values.



Approximate Methods
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RAYLEIGH’S METHOD

For an undamped system in free vibration, energy is conserved, so that

Max. Kinetic Energy = Max. Strain Energy

❖ These can be found if we know the deflected shape (i.e., the 
mode shape) of the system

❖ Normally, we do NOT know the exact mode shape, so we need to 
make an estimate

❖ Accuracy depends on making a good guess

RayleighExact ωω 
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Example 1  Two-degree-of-freedom System

The instantaneous kinetic energy of mass 1 is 

m2

m1

k 2

k 1

x2

x1

( ) tXtx ωsin11 =

That is, the maximum velocity is 

If then

( )1ωX

Therefore, the maximum kinetic energy of mass 1 is 

( ) 2

1

2

12
12

112
1

max ωω XmXmT ==

For both masses

( )2

22

2

11

2

2
1

max ω XmXmT +=

1

2
𝑚1 ሷ𝑥1

ሶ𝑥1 𝑡 = 𝜔𝑋1 𝑐𝑜𝑠 𝜔𝑡
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The instantaneous strain energy of a spring is 

( )2

2
1 lengthofChangeStiffness

m2

m1

k 2

k 1

x2

x1

For the top spring, this is 
2

112
1 xkU =

( ) tXtx ωsin11 =If then
2

112
1

max XkU =

For the bottom spring

( )2

2122
1

max XXkU −=

For both springs

( )2

2122
12

112
1

max XXkXkU −+=
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( )
2

22

2

11

2

212

2

112ω
XmXm

XXkXk

+

−+
=Equating                  , we get

For m1 = m2 = 2 kg and k1 = k2 = 200N/m,

m2

m1

k 2

k 1

X2

X1

We need an educated guess based on experience 

If we can estimate the mode shape, we will have values of X1 and X2
that can be substituted into the equation

we know that the two masses vibrate in phase and 

12 XX 

X1 = 1 and X2 = 2Let’s guess that 

This gives a value for n of 1.007 Hz 

This is an error of 2.3%  (exact value is 0.984 Hz)

maxmax UT =



Single DOF approximations

• Lumped mass model

42

x

y

z

x

m

k

• Solving for m and k using 
estimates for X, Y and Z.

• What are your choices and 
how good will they be?
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Lumped mass system

4 kg

2 kg

2 kg

200 N/m

200 N/m

200 N/m

x

y

z

x

Objective:
To find an approximate single-degree-of-freedom model to analyse 
the motion of the top mass of a 3-degree-of-freedom system

m

k

The displacement of the model mass will be 
linked to the top mass, since that’s the point 
on the real system that we are interested in

The values for m and k are found by equating 

the kinetic and strain energies in the real and 
model systems
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4 kg

2 kg

2 kg

200 N/m

200 N/m

200 N/m

X

Y

Z

X
m

k

Real 
system

Model 
system

Equating max. kinetic energies in the real 
and model systems

( ) ( ) ( )2
2
12

2
12

2
1 ω2ω2ω4 ZYX ++

( )2
2
1 ωXm=

Hence
2

222 224

X

ZYX
m

++
=

Equating max. strain energies in the real 
and model systems

( ) ( ) ( )2
2
12

2
12

2
1 200200200 ZZYYX +−+−

( )2
2
1 Xk=

Hence
( ) ( ) 

2

222
200

X

ZZYYX
k

+−+−
=
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To get values for m and k, we need an estimate for the mode shape

2

222 224

X

ZYX
m

++
=

Characteristics:

❖ All masses move in phase with each other

❖ X > Y > Z

( ) ( ) 
2

222
200

X

ZZYYX
k

+−+−
=

4 kg

2 kg

2 kg

200 N/m

200 N/m

200 N/m

X

Y

Z

Choice #1





















































=

1

2

3

Z

Y

X Since all springs have 
the same stiffness, we 
might guess that they 
all deflect by the same 
amount

m = 5.11 kg   and k = 66.7 N/m

Other choices are given in the lecture notes



Single DOF approximations

• Cantilevered beam

46

F cos t 

y(L, t) ?

z(t)

m

k

F cos t 

There are two stages

1. Set up the approximate model

2. Use it to do the steady-state 
response calculation 
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x
F cos t 

y(x, t) y(L, t) = z(t)

m

k

F cos t 

We must link the displacement of the model mass to 
that at the free end of the cantilever

In terms of the chosen displacement variables, y(L, t) = z(t)

For steady-state, sinusoidal vibration, the link can be written as 

( ) tLYtZ ωcosωcos = ( )LYZ =or

To proceed, we need to choose an expression for the deflected shape 
of the cantilever 

Stage 1: Set up the model
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Choice #1 ( ) 2xCxY =

We must find the value of C that links the two systems 

2LCLYZ == 






2L
ZC=Hence ( ) 2

2
x

L
ZxY =and

( )xYThis expression for is used to calculate the maximum kinetic and 
strain energies in the beam

Equating each with the equivalent expressions for the single-degree-
of-freedom model gives the required mass and stiffness values

Thus 

( ) 

22

2
15

4

2
2

2
1

22

2
1

2

2

2

2

2
1

22

2
122

2
1

max

ωω

ωdρω

ωdρω

0

0

ZmL
L

Z
A

Zmxx
L

Z
A

ZmxxYAT

L

L

=

=








==
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Equating the strain energies, gives the model stiffness 3
4

L
IEk =

Applying the natural frequency test to the approximate model, 

A

IE

Lm

k
n

ρ

47.4
ω

2
==we find that

This is the same (poor) result obtained with Rayleigh’s Method 
using this choice for 

For instance, from your previous courses you would have found 
that the stiffness of a uniform cantilever beam is 

( )xY

3
3

L
IEk =

Hence, the model mass is LAm ρ2.0=

Other choices are given in the lecture notes



Beam Vibration
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• Given a generalized beam we wish to solve for

– Natural Frequency ωnr

• Where r is the frequency number (1, 2, 3, …)

– Mode shapes associated with specific values of 
ωnr

• Essentially we are looking for the vertical displacement, 
y, for any given point along the beam, x

x = L

y(x)

O

x = 0



• From previous experience we know then that we 
need to find a generalized equation

• Where will give us ωnr

• Solving the solution vector {C} at ωnr will define the 
mode shapes

• To do this you need a generalized equation for vertical 
displacement, y, as a function of distance along the 
beam, x, and time, t.

    0  =  C Z

  0det =Z



• For free vibration at a natural frequency, the motion 
of each point on the beam will be sinusoidal, but the 
amplitude of vibration will vary along the length

• Substitution of                               into



( )xY

x

Amplitude at position, xy

x = 0 x = L

( ) ( ) t  xY  =  t  ,xy ωcos

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++ (7)

2

2

4

4

t

y
 A   =  

x

y
 IE




−








• This results in a generalized equation for 
displacement of y at any given point along the 
beam, x, for a given frequency of vibration 
(contained in λ) 

• HOWEVER, this contains 4 unknowns (C1, C2, 
C3 and C4) and you will therefore need a 
minimum of 4 equations to solve for them 

– Boundary conditions must be used!!!

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++
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You will therefore need to partially differentiate (6)

several times with depending on what boundary 
conditions you have

xC  x CxC  x C  =   
dX

dY
λsinhλλcoshλλsinλλcosλ 4321 ++−

( ) xC  x CxC  x C  =  x Y λcoshλsinhλcosλsin 4321 +++

xC  x CxC  x C  = 
dx

Yd
λcoshλλsinhλλcosλλsinλ 2

4

2

3

2

2

2

12

2

++−−

xC  x CxC  x C  = 
dx

Yd
λsinhλλcoshλλsinλλcosλ 3

4

3

3

3

2

3

13

3

+++−

(6a)

(6b)

(6c)

(6d)
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In the exam you are expected to be able to form the 
generalized matrices ([Z]{C}={0}) for any boundary 
conditions.

You will not be asked to solve for natural frequencies and/or 
mode shapes by hand. 

You are expected to be able to sketch basic mode shapes 
given boundary conditions, without solving for values.



Vibration Isolation
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Transmitted forces

k c

m

p ( t )

x

Case (a) Source of vibration within a device : How much force 
is transmitted to the support?

k c

m

p

xk

x

xk

STEP 1: Dynamic model STEP 2: Free Body Diagram

Assume that the vibration 
source generates an excitation 
force, ( ) tPtp ωcos=

𝑐 ሶ𝑥

𝑐 ሶ𝑥
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m

p

xc xk

x

STEP 3: Equation of motion

For the device

x

Transmitted force

(1)

(2)

Substitutions:

( ) t
Ptp

ω
e

i
= and( ) t

Qtq
ω

e* i
=,

( ) 2222

222

F

ωω

ω*

cmk

ck

P

Q
T

+−

+
==

𝑥 𝑡 = 𝑋∗𝑒𝑖𝜔𝑡

ሶ𝑥 𝑡 = 𝑖𝜔𝑋∗𝑒𝑖𝜔𝑡

ሷ𝑥 𝑡 = −𝜔2𝑋∗𝑒𝑖𝜔𝑡

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑝

𝑞 𝑡 = 𝑘𝑥 + 𝑐 ሶ𝑥
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( ) tYty ωcos=

Case (b) Source of vibration from the support : How much 
vibration is transmitted to the device?

( )xyk −

STEP 1: Dynamic model STEP 2: Free Body Diagram

The support vibration is defined 
by the displacement, 

k c

m

y(t)

x

x

y(t)
k c

m

𝑐 ሶ𝑦 − ሶ𝑥
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STEP 3: Equation of motion

x

Substitutions: and

( )xyk −

x

m

We define DISPLACEMENT TRANSMISSIBILITY as

( ) 2222

222

D

ωω

ω*

cmk

ck

Y

X
T

+−

+
==

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑐 ሶ𝑦 + 𝑘𝑦

𝑐 ሶ𝑦 − ሶ𝑥

𝑦 𝑡 = 𝑌𝑒𝑖𝜔𝑡

ሶ𝑦 𝑡 = 𝑖𝜔𝑌𝑒𝑖𝜔𝑡

𝑥 𝑡 = 𝑋∗𝑒𝑖𝜔𝑡

ሶ𝑥 𝑡 = 𝑖𝜔𝑋∗𝑒𝑖𝜔𝑡

ሷ𝑥 𝑡 = −𝜔2𝑋∗𝑒𝑖𝜔𝑡
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!!!NOTE!!!
Other physical systems will have different 

transmissibility expressions. 
To be sure of your work it is best to derive TD,F every time.
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4

0 0.5 1 1.5 2 2.5 3

Frequency ratio

T
ra

n
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m

is
s
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it
y

Damping ratio 0

Damping ratio 0.2

Infinite damping

The aim in selecting isolators is to ensure that the system 
operates in the “isolation region”

It’s easy to show that T = 1 when 2ωω =n

Amplification Attenuation / Isolation
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0

1
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3

0 1 2 3
Frequency ratio

T
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n
s
m

is
s
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y

Two constraints for isolator selection:

❖ the lowest excitation frequency, ωMIN

❖ the maximum allowable transmissibility, TMAX

TMAX

nω
ωMIN

System operates at or above 
this minimum frequency

k c

m Machine

Isolators}

Design Approach for Isolator Selection
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Frequency ratio
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TMAX

nω
ωMIN

0

1

2

3

0 1 2 3
Frequency ratio

T
ra

n
s
m

is
s
ib

il
it
y

TMAX

nω
ωMIN

If T = TMAX at ω = ωMIN

MAX

2

MINMAX2

1

ω
ω

T

T
n

+
=

1
ω

ω

1

2

2

−
=

n

T

MAX

2

MINMAX2

1

ω
ω

T

Tm
mk n

+
== (1)

Equation (1) is the maximum stiffness consistent with the 
design constraints

Since 
m

k
  =  n

2ω , the required isolator stiffness is
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There are also constraints imposed by static considerations

Manufacturers often express these constraints by specifying a 
maximum static deflection

The actual static deflection,  X0 , is given by

ISOLATOR

0
k

gm
X =

Alternatively, combining (1) and (2) gives

(3)

(2)









+=

MAX

2

MIN

0

1
1

ω T

g
X

This is the minimum static deflection consistent with the 
design constraints



Examples

These are some further examples of what you 
might expect on the exam. In most cases the 
final solution has not been worked out as it is 

suggested that you try them yourself first.
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1. Figure Q.1 shows a solid disc with a mass of 0.8 kg and a radius of 
0.6 m, which can roll without slipping on a horizontal surface.  It is 
restrained by a spring of stiffness 5 kN/m and by a viscous damper 
having a damping coefficient of 15 Ns/m.

(a) Draw a fully annotated free body diagram for the disc and derive 
the equation of motion.  Hence show that the undamped natural 
frequency and the damping ratio are approximately 10.3 Hz and 
0.097 respectively. [10]

(b) With the disc in its equilibrium position, it is given an initial 
angular velocity of 6 rad/s.  Find the maximum angular 
displacement of the disc during the subsequent free vibration. [10]

Figure Q.1

r

k c

G
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Free Body Diagram

G

q

x

F

xk

Question asked for “a fully annotated 
free body diagram for the disc”

Students lost marks if they 
didn’t draw one

G

q

Equations of motion

x

For no slip at the ground,

Substitute for x and then eliminate F to give the equation of motion

𝑐 ሶ𝑥

−𝑘𝑥 − 𝑐 ሶ𝑥 + 𝐹 = 𝑚 ሷ𝑥

−𝐹𝑟 = 𝐼𝐺 ሷ𝜃

𝑥 = 𝑟𝜃 ሶ𝑥 = 𝑟 ሶ𝜃 ሷ𝑥 = 𝑟 ሷ𝜃
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Hence, z
m

k
n H3.10

3

2
ω ==

097.0
3.2 2

2

""""2

""
γ     

mk 

c

MK

C
    === so we have “light” damping

γ  1 ω
2

−= nnwhere

( ) ]sincos[eθ 21

ωγ tBtBt nn

tn += −

Response expression

Initial conditions given: 0θ = and 0=twhen

Final equation of motion is 

Use these to find the constants B1 and B2

3𝑚 ሷ𝜃 + 2𝑐 ሶ𝜃 + 2𝑘𝜃 = 0

ሶ𝜃 = 6 𝑟𝑎𝑑/𝑠
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Initial conditions: 0θ0 = and 0=twhen

Max. angular displacement is when 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Time (s)

A
n

g
le

 (
r
a

d
)

This gives

ሶ𝜃 = 6 𝑟𝑎𝑑/𝑠

𝜃 𝑡 =
ሷ𝜃𝑜

Ω𝑛
𝑒−𝛾𝜔𝑛𝑡 sinΩ𝑛𝑡

ሶ𝜃 = 6
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2. A rigid bar, AB, has length L and moment of inertia, IO, about the central 
pivot at O.  Identical masses (mass m) are connected at each end of the 
bar by springs K1 and K2, as shown in Figure Q.2.    

(a) Draw fully annotated free body diagrams for the system. [5]

(b) Derive the equations of motion in matrix form. [10] 

K1
K2

BA O

m m

Figure Q.2 x2

q

x1



74

K1

O
BA

m m

x2

q

x1

Free Body Diagrams

AB=L

θ
2

L

Change of length of spring 11 θ
2

x
L

K −=

Spring is in TENSION









− 11 θ

2
x

L
K

Force is 







− 11 θ

2
x

L
K

is

x1
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K1
K2

O
BA

m m

x2

q

x1

Free Body Diagrams

AB=L

θ
2

L









− 11 θ

2
x

L
K

x2

θ
2

L

Change of length of spring 22 θ
2

x
L

K −=

Spring is in COMPRESSION









− 22 θ

2
x

L
K

Force is 







− 22 θ

2
x

L
K

is is

x1
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Equations of motion

O
BA

m m

x2

q

x1

AB=L









− 11 θ

2
x

L
K 








− 22 θ

2
x

L
K

x1

x2

qO

+𝐾1
𝐿

2
𝜃 − 𝑥1 = 𝑚 ሷ𝑥1

+𝐾2
𝐿

2
𝜃 − 𝑥2 = 𝑚 ሷ𝑥2

−𝐾1
𝐿

2
𝜃 − 𝑥1 ×

𝐿

2
− 𝐾2

𝐿

2
𝜃 − 𝑥2 ×

𝐿

2
= 𝐼𝑜 ሷ𝜃
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Re-arrange into matrix form:

Remember to check that
❖ leading diagonals contain only positive  terms
❖ matrices are symmetric

𝑚 0 0
0 𝑚 0
0 0 𝐼𝑜

ሷ𝑥1
ሷ𝑥2
ሷ𝜃

+

𝐾1 0 −𝐾1
𝐿

2

0 𝐾2 −𝐾2
𝐿

2

−𝐾1
𝐿

2
−𝐾2

𝐿

2
𝐾1 + 𝐾2

𝐿2

4

𝑥1
𝑥2
𝜃

=
0
0
0
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3. Figure Q.3 shows a rocker arm with moment of inertia, IO, about the pivot 
at O.  Rubber blocks at ends A and B can each be modelled as a spring 
(stiffness, k) in parallel with a viscous damper (damping coefficient, c).  The 
base of the block at A is attached to a rigid foundation.  The base of the 
block at B is attached to a follower, which is driven by a cam that gives the 

follower a sinusoidal displacement of amplitude, Y, and frequency ω. 

(a) Draw a fully annotated free body diagram for the rocker arm. [6]

(b) Derive an expression for the steady-state amplitude of the 
displacement at A. [10]

(c) Derive an expression for the steady-state amplitude of the force 
transmitted to the foundation at A. [4]

Figure Q.3

a

BA O

b

Follower

Cam

Rubber 
blocks

q

y(t)

Follower



BA O
q

a b

θa
kc kc

( )θbyk −

θb

( )ty

Free Body Diagram

𝑐. 𝑎 ሶ𝜃 𝑘. 𝑎𝜃 𝑐 ሶ𝑦 − 𝑏 ሶ𝜃

𝑎 ሶ𝜃

𝑏 ሶ𝜃

ሶ𝑦 𝑡
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BA O
q

a b

( )θbyk −

Equation of motion

or

Substitutions: ( ) t
Yty

ω
e

i
= ( ) t

t
ω

eθ * i
=and

q

O

For part (b), the displacement at end A is
*a

−𝑐𝑎 ሷ𝜃 × 𝑎 − 𝑘𝑎𝜃 × 𝑎 + 𝑐 ሶ𝑦 − 𝑏 ሶ𝜃 × 𝑏 + 𝑘 𝑦 − 𝑏𝜃 × 𝑏 = 𝐼𝑜 ሷ𝜃

𝐼𝑜 ሷ𝜃 + 𝑐 𝑎2 + 𝑏2 ሶ𝜃 + 𝑘 𝑎2 + 𝑏2 𝜃 = 𝑐𝑏 ሶ𝑦 + 𝑘𝑏𝑦

𝑐. 𝑎 ሶ𝜃 𝑘. 𝑎𝜃 𝑐 ሶ𝑦 − 𝑏 ሶ𝜃



BA O
q

a b

kc kc

( )θbyk −

Free Body Diagram

For part (c), the force transmitted at end A is

Use this with the EOM for the beam to find 

𝑇𝑓 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
=

𝑄∗

𝑌
. Note that the Θ* terms will drop out.

θ.ak

𝑐. 𝑎 ሶ𝜃 k. 𝑎𝜃

𝑎 ሶ𝜃 𝑎𝜃

𝑐. 𝑎 ሶ𝜃

b𝜃𝑏 ሶ𝜃

ሶ𝑦 𝑡 𝑦 𝑡

𝑐 ሶ𝑦 − 𝑏 ሶ𝜃

𝑞 = 𝑐. 𝑎 ሶ𝜃 + 𝑘. 𝑎𝜃



83

5. Use Rayleigh’s Method, with at least two 
estimates for the mode shape, to estimate the 
lowest natural frequency of the system shown 
in Figure Q.5. [10]

Figure Q.5

m

3m

k

k

k

k

2m



m

3m

k

k

k

k

2m

Rayleigh’s Method

1X

3X

2X

The maximum kinetic energy of mass j is 

( ) ( )2

2
1

max ωMass jj XmT j =

Here

( )2

3

2

2

2

1

2

2
1

max 23ω XmXmXmT ++=

The maximum strain energy in a spring is 

( )2

2
1 lengthofChangeStiffness

( ) ( ) 2

32

2

212
1

max XXXXkU −+−=

Here

( ) 2

3

2

31 XXX +−+
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2m

1X

3X

2X

Mode shape estimates 321 XXX Here
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Try to estimate the 
static deflection shape


